Imputations: Benefits, Risks and a Method for Missing Data Nikolas Mittag Harris School of Public Policy, University of Chicago

Introduction

Problems

- Frequently missing variables or observations
- conditions for either analyzing complete cases or imputation often do not hold

Contributions

- examine consequences of invalid assumptions
- ▶ is omitting or imputing missing data better?
- evaluate common imputation methods
- discuss method to address these problems

When can Imputation Methods be Useful?

Missing Variables

- can reduce or avoid omitted variable bias
- problem: quality & comparability of source data

Missing Observations

- data often includes imputed observations
- under which conditions should they be used?

Missing	Imputations use inform from "outside the mo	
data is	Νο	Ye
ignorable	Potential efficiency gains from larger sample	Poter efficienc from la sample new info
not ignorable	Trade-off selection vs. imputation bias	Additi informati remove

Implied Desirable Features of Imputations

- conditioning on a lot of information
- reproducing relation of missing data to covariates and error term
- incorporate differences between source and outcome data
- transparency researchers need to know which information was used

International Total Survey Error Workshop 2013, June 3, Ames, IA

mation odel"

es ential cy gains

larger le and

ormation

tional tion may /e bias

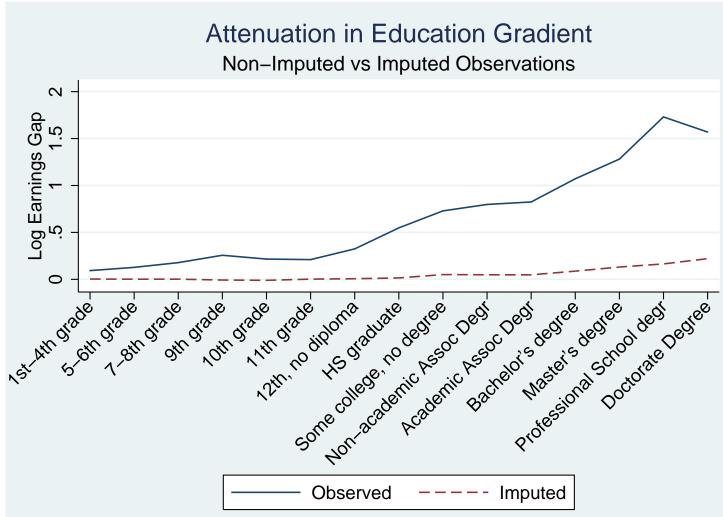
Common Sources of Bias

Conditioning Set

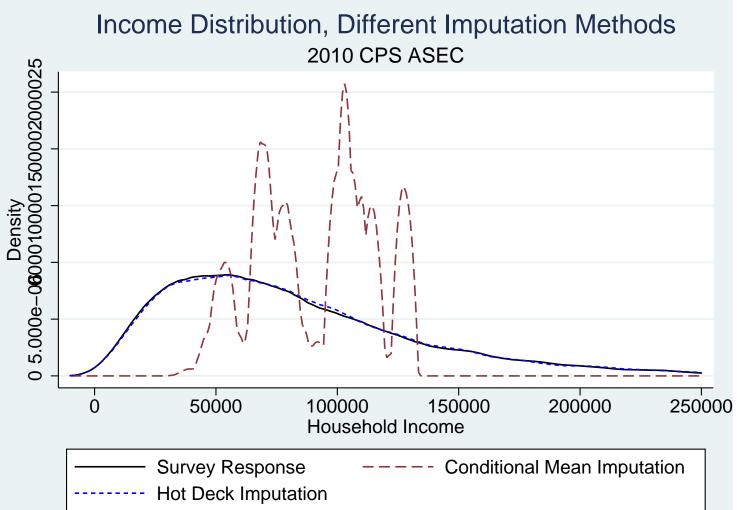
- imputed values are (conditionally) independent of any variable that is not in the conditioning set
- Literature has shown significant bias in OLS for an imputed dependent variable under MAR
- In addition, I discuss the bias on coefficients of other included variables when used as an independent variable From including endogenous variables \implies Ideal conditioning set is as large as possible, but excludes endogenous variables. Yet, it is often not even published in practice.

Using Imputed Values

Bias due to prediction error in imputations, e.g.:



2. Obtaining correct SEs is often not feasible Ideal Imputation hinges on Outcome Model E.g. cond. mean imputation ideal for OLS, but:



Implied Desirable Features of Imputations

- allow many conditioning variables to reduce bias from conditioning set and prediction error
- more information to avoid these biases
- In the set of the s
- replicability and known theoretical properties to correct bias and obtain correct SEs

Common Imputation Methods

Method	key advantages	main problems
Hot Decks	univariate stat., idiosyncratic data features	conditioning set, estimating SEs, multivar. models
Re- weighting	conditioning set, implementation	require MAR, limited scope
Parametric Models	implementation, theoretical properties	parametric restrictions
Semi- Parametric	relax parametric restrictions	implementation

Conditional Density Method

Basic Idea

- obtain a flexible r conditional densit
- estimate model of the estimated der

Main Advantage

- combines key adv semi-parametric
- easy to implement
- no bias from prec
- conditioning set c
- works well with m
- makes "division of labor" simple

Performance

- ideal method in all applications

barametric estimate of ty of missing data of interest by integrating over nsity using simulation
S
vantages of parametric and
methods
nt and obtain correct SEs
diction error
can be large and is adjustable
nany outcome models
of labor" simple

Compare methods in two applications: Imputing SNAP amounts from CPS in the ACS Imputing hours worked in ACS under MAR hot decks reproduce marginal densities well, but fare poorly in multivariate applications conditional mean imputation is ideal for regressions, but poor in other cases conditional density method performs similar to